A Set of *Atom-in-Molecule* Polarizability Increments Derived by Means of the MINDO/3-FP Method

Gerhard Raabe, Elke Zobel, Rüdiger Kock, and Jürgen Peter Souren Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Prof.-Pirlet-Straße 1, D-52074 Aachen

Z. Naturforsch. 52a, 665-674 (1997); received June 25, 1997

In continuation of earlier work, a set of 90 non-cyclic organic compounds was used to determine atom-in-molecule polarizability increments employing Metzger's combination of the semiempirical MINDO/3-FP method and a partitioning of the molecular dipole moment. The group contained alcohols, ethers, amines, amides, and carboxylic acids. More than one hundred arbitrarily chosen molecules were then used to evaluate the new set of increments. This set of compounds does not overlap with the one used to derive the increments. The molecular polarizabilities calculated employing the increments were found to correlate nicely with the corresponding "experimental" values determined by means of the Lorenz-Lorentz equation. Thus, the atomic increments together with the correlation equation provide access to polarizabilities which might for example be used to calculate the dispersion- and induction contributions to the lattice energies of organic molecular crystals.

1. Introduction

Previously we reported the results of a semiempirical investigation [1 a] in which we calculated the molecular and atom-in-molecule polarizabilities of fourteen aliphatic amines using the MINDO/3-FP method together with a partitioning of the molecular dipole moment [2]. In spite of numerical differences the molecular MINDO/3-FP values were found to correlate nicely not only with the corresponding experimental polarizabilities, which can be calculated from densities, molecular weights, and refraction indices by means of the Lorenz-Lorentz equation, but also with those obtained by the method of Miller and Savchik [3]. Averaging the calculated polarizabilities of corresponding atoms in different molecules resulted in a set of atomin-molecule polarizability increments for hydrogen, carbon, and nitrogen which could be used quite successfully to predict molecular polarizabilities [1]. While our earlier investigation was carried out as part of our work on the protonation energies of aliphatic amines [4-8], polarizabilities are also of high interest in many other fields like organic solid state chemistry. So, for example, they can be used together with molecular ionization potentials and atomic charges to calculate the dispersion [9] and induction contributions [2] to the lattice energy of organic molecular crystals. Otherwise these componentes are difficult to obtain [10-12] since large basis sets of high flexibility are required to calculate them directly.

In this paper we report the results of further work which led to additional polarizability increments for atoms in olefins with conjugated and isolated double bonds, carbonyl compounds such as aldehydes, ketones, amides, and carboxylic acids, as well as for those in mono- and polyfunctional alcohols and ethers. Ninety molecules were used to determine the increments. A complete geometry optimization was performed for each molecule with the MINDO/3 method [13], employing the standard program package [14]. The optimized structural parameters were then used to calculate molecular and atomic polarizabilities according to the method which has been outlined in more detail elsewhere [1, 2].

Choice of the electric field strength in the elements of the modified \mathbf{H}^{core} matrix is by no means a trivial problem [1, 2]. On the one hand it has to cause a significant change in the molecular dipole moment, while on the other hand it should be still so low that hyperpolarizabilities do not play a significant role. In this paper we use a value of $1000 \text{ esu/cm}^2 = 5.83 \cdot 10^{-5}$ a.u., which turned out to yield quite satisfying results in our previous study [1].

2. Results and Discussion

Reprint requests to Dr. Gerhard Raabe, Fax 0241-8888-385. increment

The molecules used to determine the polarizability increments and their calculated molecular polarizabil-

0932-0784 / 97 / 0800-0665 \$ 06.00 © - Verlag der Zeitschrift für Naturforschung, D-72027 Tübingen

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Table 1. MINDO/3-FP polarizabilities (α_{MFP}) of the molecules used to derive atomic polarizability increments in comparison w those obtained by the method of Miller and Savchik (α_{MS}) [3] and the experimental data (α_{ex}) which have been calculated from 1 listed densities (ϱ) , molecular masses (M_r) , and indices of refraction (n) by means of the *Lorenz-Lorentz* equation. All values in If not mentioned otherwise, the experimental data are from [15] $(\alpha_{ex} = 1.194 \cdot \alpha_{MFP} + 1.706; |r| = 0.981)$.

Molecule	α_{MFP}	α_{MS}	α_{ex}	M_r	Q	n	Molecule	α_{MFP}	α_{MS}	α_{ex}	М,	ρ	n
1. H ₂ O		1.471	1.472			1.332988 1b	53. E-cis-MeHC=CHCOMe	7.168	9.77010				
2. MeOH	1.757		3.263		0.7914	1.3288	54. Z-trans-MeHC = CHCOM	e 7.125	9.770	10.089	84.13	0.8624	1.4350
3. EtOH	3.002	5.108	5.120	46.07	0.7893	1.3611	55. E-trans-MeHC = CHCOM	e 7.216	9.77010				
4. n-PrOH	4.225	6.946	6.949	60.11	0.8035	1.3850	56. HCONH ₂	2.585	3.850	4.210	45.04	1.1334	1.4472
5. i-PrOH	4.125	6.946	6.986	60.11	0.7855	1.3776	57. HCONHMe	4.100	5.658	6.006	59.07	1.011	1.4319
6. n-BuOH-1	5.471	8.788	8.782	74.12	0.8098	1.39931	58. HCONMe ₂	5.463	7.482	7.897	73.09	0.9487	1.4305
7. s-BuOH	5.375	8.788	8.790	74.12	0.8063	1.3978 ²	59. MeCONH ₂	3.707		6.030	59.07	0.9986	1.4278
8. i-BuOH	5.362	8.788	8.827	74.12	0.8027	$1.39768^{3.4}$	60. MeCONHMe	5.251	7.482	7.822	73.10	0.9571	1.4301
9. t-BuOH	5.242	8.788	8.786	74.12	0.7887	1.3878	61. MeCONMe ₂	6.672	9.314	9.678	87.12	0.9366	1.4380
10. HOCH ₂ CH ₂ OH	3.519	5.851	5.753	62.07	1.1088	1.4318	62. EtCONH ₂	4.995	7.482	7.850	73.10	0.9262	1.4160
11. HOCH ₂ CH(OH)Me	4.701	7.670	7.558	76.11	1.0361	1.4324	$63. H_2C = CHCH_2NH_2$	4.862	7.572 10				
12. HOCH ₂ CH ₂ CH ₂ OH	4.752	7.670	7.500	76.11	1.0597	1.4398	$64. H_2C = CHCH_2NHMe$	6.391	9.419 10				
13. HOCH ₂ CH(OH)Et	5.957	9.498	9.351	90.12	1.0024	1.4378 ²	65. $H_2C = CHCH_2NMe_2$		11.266 10				
14. HOCH ₂ CH ₂ CH(OH)Me	5.920	9.498	9.383	90.12	1.0053	1.4410 ²	66. H ₂ C=CHCMeHNMe ₂	8.893	13.11310				
15. HOCH2CH2CH2CH2OH	6.017	9.498	9.365	90.12	1.0171	1.4460	$67. H_2C = CMeCH_2NMe_2$	8.979	13.11310				
16. MeCH(OH)CH(OH)Me	5.952	9.498	9.350	90.12	1.0003	1.4367 8.9	$68. H_2C = CH_2$		4.227	4.265			
17. HOCH ₂ CMe ₂ (OH)	5.859	9.498	9.299	90.12	1.0024	1.4350	69. MeHC = CH ₂	3.874		5.643	42.08	0.647	1.3567
18. HOCH, CHMeCH, OH	5.909	9.498 10					70. E-MeHC = CHMe	5.620		8.624		0.6042	1.3848
19. MeOMe	3.224	5.108	5.160	5			71. Z-MeHC = CHMe	5.384		8.547		0.6213	1.3931
20. MeOEt	4.561	6.946	6.919		0.7252	1.34206	72. $Me_2C = CH_2$	5.128		8.925	56.11		1.3926
21. MeOn-Pr	5.831	8.788	8.740		0.738	1.3579	73. $Me_2C = CHMe$		9.575	9.892		0.6623	1.3874
22. MeOi-Pr	5.743	8.788	8.913		0.7237	1.35767	74. $Me_2C = CMe_2$		11.603	11.729		0.7080	1.4122
23. EtOEt	5.908	8.788	8.916		0.7138	1.3526	75. $trans$ -H ₂ C = CHCH = CH		7.693	8.903	54.09	0.6211	1.4292
24. MeOCH ₂ CH ₂ OMe		9.498	9.580		0.8629	1.3796	76. E-trans-H ₂ C=CHHC	2.001	11070	01702	5 1105	0.0211	1.12/2
25. EtOCH, CH, OEt		13.168			0.8484	1.3860 11	=CHMe	7.731	9.536	10.322			
26. MeOCH ₂ CH ₂ OH		7.670	7.621		0.9647	1.4024	77. Z -trans- H_2C = $CHHC$	1.751	7.550	10.522			
27. EtOCH, CH, OH	6.449	9.498	9.479		0.9297	1.4080	=CHMe	7.592	9.536	10.322	68 13	0.6760	1.4301
28. MeOCH ₂ CH(OH)Me	6.362	9.498 10		70.12	0.7277	1.1000	78. $trans-H_2C = CMeHC$	1.572	7.550	10.522	00.15	0.0700	1.4501
29. MeOCH ₂ CH(Me)OH	6.279	9.498 10					= CH ₂	6.851	9.536	10.075	68 13	0.6810	1.4219
30. MeOCH ₂ CH ₂ CH ₂ OH		9.498 10					79. Z-trans-MeHC=CHHC	0.001	7.550	10.075	00.15	0.0010	1.4217
31. HOCH ₂ NHMe	4.233	6.637 10					=CHMe	9.680	11.38	12.160	82 15	0.7196	1.4500
32. HOCH ₂ NMe ₂	5.565						80. Z-trans-H ₂ C=CMeHC	7.000	11.50	12.100	02.13	0.7170	1.4500
33. HOCH ₂ CH ₂ NH ₂		6.637	6.443	61.09	1.0180	1.4541	= CHMe	8 756	11.38010				
34. HOCH ₂ CH ₂ CH ₂ NH ₂	5.302	8.474	8.327		0.9824	1.4617 12	81. $trans-H_2C = CHHC$	0.750	11.500				
35. HOCH ₂ CHMeNH ₂	5.275	8.474 10		73.11	0.7024	1.4017	$= CMe_2$	0.230	11.38010				
36. HCOOH	2.046	3.469	3.394	46.03	1.220	1.3714	82. $trans-Me_2C = CMeHC$	7.230	11.500				
37. MeCOOH	3.154	5.255	5.151		1.0492	1.3716	$= CMe_2$	1/1 229	16.541 10				
38. H ₂ CO	1.569	2.676 10		00.05	1.0472	1.5710	83. $trans-Me_2C = CMeMeC$	14.556	10.541				
39. MeHCO		4.496	4.567	44.05	0.7834	1.3316 13	$= CMe_2$	1/1 227	16.91710				
40. H ₂ C = CHCH ₂ CHO	5.419	7.927 10		44.03	0.7634	1.5510	84. $trans-H_2C = CMeHC$	14.337	10.917				
41. Z-cis-MeHC=CHCHO	5.791	7.927 10					$= CMe_2$	10 224	13.225 10				
42. E-cis-MeHC = CHCHO	5.928	7.927 10					$= \text{CMe}_2$ 85. trans-Me ₂ C=CHHC	10.554	13.223				
43. Z-trans-MeHC=CHCHO	5.966	7.927					$= CMe_2$	12 200	15.071	16 220	110.20	0.7625	1.4785
	6.077	7.927 10						13.308	13.071	10.230	110.20	0.7623	1.4/63
44. E-trans-MeHC = CHCHO	7.267						86. $trans-Me_2C = CHMeC$	15.071	12 500 10				
45. E-MeHC = CHCH ₂ CHO	4.256		6.430	56.07	0.8410	1.4017	= CHMe	15.071	12.566 10				
46. trans-H ₂ C=CHCHO	5.525	7.927	8.301		0.8410	1.4017	87. $trans-H_2C = CHMeC$	10.402	12 225 10				
47. $trans$ -H ₂ C=CMeCHO					0.8370		=CMe ₂	10.402	13.225 10				
48. Me ₂ CO	3.888		6.413			1.3588	88. $trans-Me_2C = CHHC$	11 200	12 225 10				
49. EtMeCO	5.189	8.169	8.198	72.12		1.3788	=CHMe	11.286	13.225 10				
50. Et ₂ CO	6.482		10.000	86.14	0.8138	1.3924	89. $trans-Me_2C = CMeHC$	12.501	45.074.10				
51. H ₂ C=CHCH ₂ COMe	6.850	9.770 10					= CHMe		15.071 10				
52. Z -cis-MeHC=CHCOMe	7.043	9.770 10					90. cis - H_2C = $CHCHO$	4.130	6.086 10				

from [16]; ² racemat; ³ from [17]; ⁴ $n_{\rm D}^{15}$; ⁵ experimental polarizability from [3]; ⁶ d_0^{10} , $n_{\rm D}^{4}$; ⁷ d_4^{15} ; ⁸ $n_{\rm D}^{25}$; ⁹ meso; ¹⁰ no experimental davailable in [15] and [17]; ¹¹ d_4^{20} ; ¹² d_4^{26} ; ¹³ d_4^{18} ; ¹⁴ d_4^{19} ; ¹⁵ d_4^{85} ; $n_{\rm D}^{78}$; ¹⁶ d_4^{25} ; ¹⁷ d_4^{110} , $n_{\rm D}^{110}$; ¹⁸ $n_{\rm D}^{70}$ [15], d_4^{79} [17a], ¹⁹ $n_{\rm D}^{70}$; ²⁰ $n_{\rm D}^{16}$

ities are listed in Table 1 together with the available "experimental" values calculated by means of the Lorenz-Lorentz equation. In addition the corresponding values obtained by the method of Miller and Savchik [3] are listed. The influence of alkyl substitution on atom-in-molecule polarizabilities has been studied only for the methyl group. However, the effect of alkyl substituents different from methyl on the

atomic polarizabilities of the heavy atom skeleton is not likely to differ significantly from that of the methyl group. Thus we believe that the influence discussed for methyl is a good approximation to the influence of other alkyl substituents, too.

Taking into account the modest size of the basis set employed within the framework of the MINDO/3 method and especially the lack of diffuse and polariza-

tion functions it is not surprising that the MINDO/3-FP polarizabilities are clearly smaller than the empirical data (cf. Table 1). On the average the molecular MINDO/3 polarizabilities amount to 65% of the experimental values.

With a correlation coefficient of about 0.980 the relationship between calculated and empirical data is close to linearity as shown in Fig. 1, where the MINDO/3-FP polarizabilities of 57 molecules are plotted against the corresponding experimental values.

2.1. Hydrogen

As before [1] we calculated a mean polarizability for the hydrogen atoms of each molecule and subsequently averaged those mean values over all molecules. The finally obtained average value for hydrogen is 0.187 ${\rm \AA}^3$ and, therefore, essentially identical with the one obtained previously.

2.2. Oxygen

2.2.1. Alcohols

Among the alcohols considered in this study were mono- (2-9°, cf. Table 1.) and polyfunctional species (10-18), amino alcohols (31-35), but also mixed compounds containing ether oxygen besides alcoholic hydroxyl groups (26-30).

The polarizabilities of the hydroxylic oxygen atoms are quite similar in all compounds of this class and thus calculation of a global average value does not cause any problem. If a molecule contains more than one hydroxylic oxygen atom, first the average value for each molecule was determined. The final atomic increment was then derived subsequently by averaging over the mean values of all members of the class. The increment to be used for the hydroxylic oxygen atom in alcohols obtained in this way is 0.372 Å³.

2.2.2. Ethers

Substitution of the hydrogen atom in alcohols by an alkyl group, resulting in an ether (19-30), almost doubles the polarizability of the oxygen atom. The scattering range of the polarizabilities of the ether oxygen atoms is somewhat wider than among the alcohols

and the calculated general mean value is 0.631 Å^3 for the ethers.

2.2.3. Aldehydes

The aldehydes have to be divided into two main categories: (i) those containing a C=C double bond which is in conjugation with the carbonyl group like 41-44, 46, 47, and 90, and (ii) such molecules which either do not contain an additional C=C double bond like 38 and 39 or where the C=C segment is separated from the carbonyl groups by a methylene group (40, 45).

For the carbonyl oxygen atom of the aldehydes which are either entirely aliphatic (including H_2CO) or contain only isolated C = C bonds we calculated an average polarizability of 0.374 Å³.

It is interesting to compare the polarizability of the carbonyl oxygen in cis^b compounds 41, 42, and 90 with those in *trans* species 43, 44, and 46. On the average, the polarizability is 0.077 Å³ higher in the *trans* isomers. The corresponding increments are 0.365 Å³ for the *cis* and 0.442 Å³ for the *trans* isomer, respectively. The general mean value amounts to 0.403 Å³.

2.2.4. Ketones

For the carbonyl oxygen of those ketones which do not contain C=C double bonds in conjugation with the C=O group (48-51) we obtained an average polarizability of 0.380 Å³. Like in the case of the aldehydes, if the carbonyl group of the ketone is conjugated with an olefinic double bond, the polarizability of the carbonyl oxygen is higher in the *trans* than in the *cis* species. The mean value obtained from 54 and 55 is 0.449 Å³. From 52 and 53 we obtain a value of 0.367 Å³ for the *cis* species. These polarizabilities are almost identical with those calculated for the aldehydes, indicating that the influence of the second alkyl substituent on the relatively remote carbonyl oxygen is only weak.

2.2.5. Carboxylic Acids

For the carbonyl oxygen and the oxygen atom of the hydroxyl group we obtained average polarizabilities of 0.361 and 0.406 Å³, respectively.

b The cis/trans- and Z/E nomenclatures are used side by side in this paper. While Z/E defines the arrangement of substituents at a double bond, cis/trans describes the relative orientation of two conjugated double bonds.

^a The numbers refer to Table 1.

2.2.6. Amides

The polarizability of the carbonyl oxygen in amides is almost independent of the number of alkyl groups at the nitrogen atom. The values cover the range between 0.378 \mathring{A}^3 in 60 and 0.401 \mathring{A}^3 in 57, and the average value calculated from compounds 56-62 is 0.398 \mathring{A}^3 .

2.3. Nitrogen

2.3.1. Amines

The group of amines considered here comprises the primary amines 33-35 and 63, secondary amines 31 and 64, and the tertiary nitrogen bases 32 and 65-67.

Use of the molecules 33–35 and 63 together with those examined in [1] leads to an average polarizability of 0.612 Å³ for the primary nitrogen atom, a value almost identical with the one obtained previously. Reevaluation of the values for the secondary and tertiary nitrogen atoms under inclusion of the bases used in [1], resulted in slightly higher values of 0.778 Å³ (vs. 0.77 Å³ in [1]) and 0.951 Å³ (vs. 0.94 Å³ in [1]).

2.3.2. Amides

An adjacent carbonyl group increases the polarizability of a nitrogen atom. This surprising result shows that the proton affinity of nitrogen bases is obviously not predominantly determined by the polarizability of the basic center. Compared with the corresponding amines the proton affinities (protonation of the nitrogen atom) of the amides are significantly reduced. Thus, for example, the proton affinity of methylamine (298 K)° calculated at the ZPE + MP2/6-31 + + G**// HF/6-31 + + G*** level is $PA_{cal} = 216.5$ kcal/mol (experimental value: 218.4 kcal/mol [18]), while the corresponding value for protonation of the nitrogen atom of formamide is 190.9 kcal/mol.

Three primary amides were considered (56, 59, and 62), from which we calculated an average value of

 0.662 Å^3 for the polarizability of the nitrogen atom. From the molecules **57** and **60** we got an increment of 0.880 Å^3 for the nitrogen in secondary amides, while using **58** and **61** a value of 1.104 Å is obtained in the case of the tertiary compounds.

2.4. Carbon

In the preceding paper [1] we did not differentiate between carbon atoms in methyl- and methylene groups. In order to make our increment system more sensitive toward structural differences, we decided to determine not only separate increments for carbon atoms in formally different hybridization states (sp, sp², sp³) but also for those with a different chemical environment within one of these groups.

2.4.1. Singly Bonded Carbon

2.4.1.1. Methyl Groups

In the case of the methyl group we calculated separate carbon increments for those attached to carbon, oxygen, and nitrogen. So, e.g., using compounds 31, 32, 57, 58, 60, 61, 64-67 we obtained an average polarizability of 0.781 Å³ for methyl carbons attached to a nitrogen atom. From 2, 19-22, 26, and 28-30 we calculated a value of 0.764 Å³ for a methyl carbon atom attached to oxygen. Finally the polarizability increment of a methyl carbon attached to another carbon atom turned out to be 0.729 Å³.

2.4.1.2. Methylene Groups

The polarizability of the carbon atom of a methylene group is in general higher than that of a methyl carbon. Thus the value for those methylene groups which are bonded to a hydroxylic oxygen and another carbon atom is 0.853 Å³ (3, 4, 6, 8, 10-15, 17, 18). A significantly higher polarizability of 0.937 Å³ is obtained for the carbon atom of a methylene group attached to an alkoxy group and another carbon atom (20, 21, 24-30), while the average value for the atomic polarizability of methylene carbons linked to two other carbon atoms is 0.874 Å^3 (4, 6, 7, 12–15, 21). In those cases where the methylene group is bonded to both, a hydroxyl group and a nitrogen atom (31, 32), the increment is 0.944 Å³. For the C atom of a CH₂ groups attached to one nitrogen and another carbon atom only (33, 34, 63-65, 67) we calculated a value of 0.971 Å^3 .

^c PA_{cal} = $-\Delta E_{tot} + 5/2 \cdot R \cdot T$, where R is the gas constant (8.31441 (26) J·mol⁻¹·K⁻¹ [15]), T the temperature in K, and ΔE_{tot} the energy difference between the protonated base $(E_{tot}(B^+ - H))$ and the neutral molecule $(E_{tot}(B))$ including zero point energy and correlation effects.

cluding zero point energy and correlation effects.

d ZPE+MP2/6-31++G**//HF/6-31++G** means that an ab initio calculation was performed with the 6-31++G** basis set including correlation energy calculated with the MP2 method. The zero point energy and the geometry wave obtained with the same basis set at the one determinant level (Hartree Fock, HF).

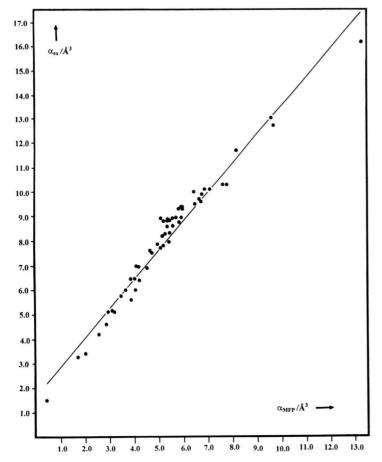


Fig. 1. Molecular MINDO/3-FP polarizabilities (α_{MFP}) and the corresponding experimental values calculated by the equation of *Lorenz* and *Lorentz* (α_{ex}). All values in Å³.

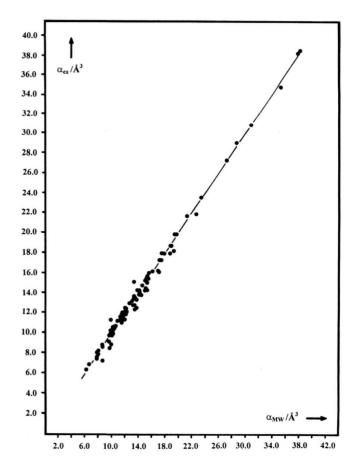


Fig. 2. Comparison of molecular polarizabilities calculated from the atom-in-molecule increments in Table 2 and the correlation equation in Table 3 ($\alpha_{\rm MW}$) with the corresponding experimental values calculated by means of the equation of *Lorenz* and *Lorentz* ($\alpha_{\rm ex}$). All values in Å³.

2.4.1.3. Methine Groups

The average polarizability of the methine carbons connected only to C atoms, is 1.026 Å^3 , while we obtained a slightly lower value of 0.977 Å^3 if one of the substituents is oxygen. A higher value of 1.134 Å^3 is obtained from 66 where one carbon atom is replaced by nitrogen. Finally, for carbon atoms which are of the formal sp³ type but do not carry any hydrogen atoms (17) we calculated a polarizability of 1.086 Å^3 .

2.4.2. Doubly Bonded Carbon Atoms2.4.2.1. Olefins

The polarizabilities of olefinic doubly bonded carbon atoms scatter widely. The lowest value among the molecules under consideration (0.841 Å³) is obtained for ethene (68), while the highest polarizability for an olefinic carbon atom (2.027 Å³) was calculated for pentamethyl butadiene (82). If one hydrogen atom in ethene is replaced by a methyl group the polarizability of both doubly bonded carbon atoms is increased. The value for the carbon atom carrying the substituent is somewhat higher (1.075 Å³) than that of the carbon atom of the = CH_2 residue (0.960 Å³). Very similar values were calculated if one of the hydrogens in ethene is substituted by $R^1 = -CH_2 - CHO$ (40), $-CH_{2}-CO-CH_{3}$ (51), $-CH_{2}-NH_{2}$ $-CH_2-NH-CH_3$ (64), $-CH_2-N(CH_3)_2$ (65), $-CH(CH_3)-N(CH_3)_2$ (66), or even a -CHO group (46). Thus, an average polarizability of 1.106 Å³ was calculated for the R1HC= carbon atom, while we obtained a value of 0.961 Å3 for the carbon atom in the adjacent = CH₂ group. The polarizabilities of both olefinic carbon atoms are further increases if the remaining hydrogen atom of the H-CR1 group is replaced by $R^2 = -CH_3$. The values are 1.225 Å³ for the olefinic carbon of the = $C(CH_3)_2$ group and 1.035 Å³ for that of the $= CH_2$ residue (72). Again, quite similar values are obtained when R² is -CHO (47) or -CH₂N(CH₃)₂ (67). The average polarizability of a doubly bonded carbon atom carrying two alkyl groups or one alkyl substituent besides a -CHO group is 1.266 Å³, while the polarizability increment for the carbon of the corresponding = CH₂ group is 1.034 Å³. Somewhat higher values are obtained when both carbon atoms of the double bond are singly substituted. In this case we have to differ between molecules where the relative orientation of the methyl groups is Z or E. Slightly higher values are obtained if the relative orientation of the substituent is E $(1.249 \text{ Å}^3 \text{ in } 70 \text{ vs. } 1.212 \text{ Å}^3 \text{ in } 71)$. If the second substituent R² (E) is not a simple alkyl group but -CH₂CHO (45), the polarizabilities of both C atoms of the C=C unit are higher. From 45, 70, and 71 we obtained an average value of 1.243 Å³ for the atoms of the olefinic double bond. Somewhat higher values for the doubly bonded carbon atom of the R²HC = segment are obtained if R^2 is a -CHO group (41-44). In this case we not only have to distinguish between E and Z isomeres but also to make a distinction between cis and trans orientation of the two double bonds. Regardless whether the double bonds are cis or trans, the polarizabilities of the olefinic carbon atoms are slightly higher in the E than in the Z isomer. Moreover, they are higher for the trans than for the cis form. However, since these differences are not too large we calculated average values which are 1.319 Å³ for the olefinic carbon atom carrying the -CHO substituent and 1.249 Å³ for the one being bonded to the alkyl group. If the hydrogen atom of the -CHO residue is replaced by a methyl group (52-55) especially the polarizability of the α-carbon atom is somewhat increased. As to be expected, the influence on the remote second C atom of the double bond is only weak. The calculated average polarizabilities of the ethylene carbons are 1.350 Å³ for the one carrying the acetyl group and 1.264 Å³ for the one bonded to the alkyl substituent. Averaging over the values for aldehydes and ketones results in an atom-in-molecule polarizability of 1.257 Å³ for the carbon atom carrying the alkyl substituent in a 1,2-disubstituted ethylene while the second substituent is -CHO or an acetyl group.

A third (73) and a fourth (74) methyl group further increases the polarizabilities of the doubly bonded carbons and the corresponding values are 1.372 Å³ (average) and 1.531 Å³, respectively.

Things are much more complicated in the case of conjugated olefinic double bonds. If one hydrogen in ethene is substituted by a vinyl group, resulting in trans-butadiene (75), the polarizabilities of both doubly bonded carbon atoms increase significantly (C²: 1.266 and C¹: 1.073, vs. 0.841 Å³ in ethene). If one of the hydrogen atoms at C¹

$$C^1 = C^2 - C^3 = C^4$$

is replaced by a methyl group, the polarizabilities of all four carbon atoms are further increased. Again, the stronger increase is obtained for the E isomer (76). In both, the Z- as well as the E-isomer, the stronger raise

Table 2. Polarizability increments derived using the MINDO3/FP atom-in-molecule polarizabilities of the molecules listed in Table 1 (in Å³). The relevant atoms are flagged with a (*).

		, a att a	
Hydrogen		$C-C*H_2-C$: 0.874
Н	: 0.187	$N-C*H_2-OH$: 0.944
		$N-C*H_2R^1$	$: 0.971 \text{ R}^1 = \text{alkyl}$
Oxygen		C_3C^*-H	: 1.026
		$C_2OC^* - H$: 0.977
(i) alcohols, ethers		C_2NC^*-H	: 1.134
$R^1 - O^* - H$: $0.372 R^{1} = alkvl$	C_3C^*-C	: 1.086
$R^1 - O^* - R^2$: $0.631 R^1, R^2 = alkvl$		
		(ii) olefinic	
(ii) aldehydes, ketones, a	amides, acids	$H_{2}C^{*}=C^{*}H_{2}$: 0.841
$R^1 - HC = O^*$: $0.374 R^{1} = H$, alkyl	$R^1HC^*=CH_2$: $1.106 R^{1} = -CHO_{1} - CH(CH_{3}) - N(CH_{3})_{2}$
	$0.403 R^{1} = -C = C - average$		$-CH_{2}R^{2}$ ($R^{2}=H$, $-CHO$, $-COCH_{3}$,
	$0.365 R^{1} = -C = C - s$ -cis fixed		$-NH_{2}$, $-NHCH_{3}$, $-N(CH_{3})_{2}$
	$0.442 R^{1} = -C = C - s$ -trans fixed	$R^1HC = C*H_2$: $0.961 \text{ R}^1 = -\text{CHO}, \text{CH}(\text{CH}_3) - \text{N}(\text{CH}_3)_2,$
$R^1R^2C = O^*$: $0.380 R^1 = alkyl$	N 116 6 112	$-CH_2R^2$ ($R^2 = H$, $-CHO$, $-COCH_3$,
	$0.408 R^{1} = -C = C - average$		$-NH_2$, $-NHCH_3$, $-N(CH_3)_2$)
	$0.367 R^{1} = -C = C - s$ -cis fixed	$R^1R^2C^*=CH_2$: 1.266 R ¹ = alkyl, R ² = $-CH_2N(CH_3)_2$,
	$0.449 R^{1} = -C = C - s$ -trans fixed	K K C -CH ₂	-CHO
$R^1C(=O)O*H$: $0.406 R^1 = H$, alkyl	$R^1R^2C = C*H_2$: $1.034 R^1 = alkyl, R^2 = -CH_2N(CH_3)_2,$
$R^1C(=O^*)OH$: $0.361 R^1 = H$, alkyl	K K C-C II ₂	-CHO
$R^1 - C(=O^*)NR^2R^3$: $0.389 \text{ R}^1 = \text{H}$, alkyl; R^2 , $\text{R}^3 = \text{H}$, alkyl	$R^1HC^*=C^*HR^2$: $1.243 R^1 = alkyl, R^2 = -CH_2 - CHO$
	. 5,555 11 11, 111, 11, 11, 11, 11, 11, 1	$R^{1}HC = C^{*}H - CHO$: $1.319 R^1 = alkyl$
Nitrogen		$R^{1}HC^{*}=CH-CHO$: $1.249 R^{1} = alkyl$
		$R^1HC = C^*H - CO - R^2$: $1.350 R^1, R^2 = alkyl$
(i) amines		$R^{1}HC^{*}=CH-CO-R^{2}$: $1.264 R^1, R^2 = alkyl$
R^1N*H	: $0.612 R^1 = alkyl$	$R^{1}HC^{*}=C^{*}R^{2}R^{3}$: $1.372 R^1, R^2, R^3 = alkyl$
$R^1R^2N^*H$: $0.778 R^1$, $R^2 = alkyl$	$R^{1}R^{4}C^{*} = C^{*}R^{2}R^{3}$: 1.572 R , R , $R = \text{alkyl}$: 1.531 R^1 , R^2 , R^3 , $R^4 = \text{alkyl}$
$R^{1}R^{2}R^{3}N^{*}$: $0.951 R^1, R^2, R^3 = alkyl$	$H_1C = C*HCH = CH_1$: 1.266
	, ,	$H_2C^* = CHCH = CH_2$: 1.073
(ii) amides		$R^{1}HC^{*}=C^{*}HCH=CH_{2}$	
$R^1 - C(=O)N*H_2$: $0.662 R^1 = H$, alkyl	$H_2C^*=C^*R^1HCH=CH_2$	
$R^{1} - C(=O)N*HR^{2}$: $0.880 R^{1} = H$, alkyl, $R^{2} = alkyl$		1.232 $R = alkyl$ 1.382 R^1 , R^2 , $R^3 = alkyl$
$R^1 - C(=O)N*R^2R^3$: $1.104 R^1 = H$, alkyl; R^2 , $R^3 = alkyl$		1.362 R, R, R = alkyl 1.146 R ¹ , R ² , R ³ = alkyl
			: $1.758 \text{ R}^1, \text{ R}^2, \text{ R}^3 = \text{alkyl}$
Carbon		$R^1R^2C^*=C^*HCH=CH_2$	
(i) saturated		K K C = C HCH=CH ₂	1.041 K, K = dikyl
N-C*H ₃	: 0.781	(iii) carbonylic	
$O-C*H_3$: 0.764	$R^1R^2C^* = O$: 1.062 R^1 , $R^2 = alkyl$; $R^1 = alkyl$, $R^2 = vinyl$
	: 0.764	$R^{T}HC^{*}=0$: 1.062 R ³ , R ² = alkyl; R ³ = alkyl; R ³ = vinyl : 0.980 R ³ = alkyl, vinyl
C-C*H ₃		R^1C^*OOH	
$HO-C*H_2R^1$	$0.853 R^{1} = alkyl$		$0.980 R^{1} = H, alkyl$
$R^1O-C*H_2R^2$: $0.937 R^1, R^2 = alkyl$	$R^{1}(C^*=O)NR^2R^3$: $1.140 \text{ R}^1 = \text{H}$, alkyl, R^2 , $\text{R}^3 = \text{alkyl}$

occurs at carbon atom C^2 . The increase of the polarizability is less pronounced when the methyl group is bonded to C^2 (78). In contrast to 1-methyl butadiene now the polarizability of the substituted carbon atom is the highest. If the methyl group is linked to carbon atom C^1 , one obtains an average polarizability of 1.447 Å³ for C^1 and C^2 (76, 77), while a clearly lower value of 1.252 Å³ emerges when C^2 carries the methyl group (78).

If an additional hydrogen atom at C⁴ is replaced by a methyl group, so that both double bonds are substituted (79), a further significant increase of the polarizability of the doubly bonded carbon atoms occurs (average value 1.542 Å³). And again, the polarizabilities of the two central carbons (1.584 Å³) are higher than those of the *termini* (1.499 Å³). If the second methyl group is bonded to C³ (80), the polarizabilities of the multiply bonded carbon atoms are lower than

in the former case (average value: 1.368 Å^3) with the highest value at carbon atom C^3 . In 1,1-dimethyl butadiene the highest polarizability is not obtained for C^1 but rather for C^2 (81).

In molecules where only one of the vinyl groups $(C^1 = C^2)$ of butadiene is substituted, the polarizabilities of the carbon atoms of the unsubstituted moiety $(C^3 = C^4)$ only slightly depends on the number of methyl substituents in the former one. Thus, we used 76-78, 81, and 87 to calculate average values of 1.382 and 1.146 Å³ for C^3 and C^4 , respectively.

In the case of the higher substituted butadienes the relationship between the substitution pattern and the polarizabilities of the backbone carbons is so complex that it is the best not to determine any average values but rather to use the individually calculated *atom-in-molecule* polarizabilities.

Table 3. Polarizabilities of several molecules chosen arbitrarily to test the derived increments. α'_{MW} denotes the values calculated directly from the increments listed in Table 2. α_{MW} was obtained form the correlation between the experimental values and α'_{MW} . For reasons of comparison the corresponding values calculated by the method of Miller and Savchik [3] (α_{MS}) are also listed. The experimental data were calculated by means of the *Lorenz-Lorentz* equation using the molecular masses, indices of refraction, and densities listed in Table 4. All values in \mathring{A}^3 . $\alpha_{MW} = 1.472 \cdot \alpha'_{MW} + 0.151$; |r| = 0.997.

Molecule	α'_{MW}	α_{MW}	α_{MS}	$\alpha_{\rm ex}$	Molecule	α'_{MW}	α_{MW}	α_{MS}	$\alpha_{\rm ex}$
1. n-C ₅ H ₁₁ OH	6.820	10.19	10.63	10.63	56. E-MeHC = CHn-Pr	7.936	11.83	11.60	11.7
2. n-C ₆ H ₁₃ OH	8.068	12.03	12.48	12.54	57. $H_2C = CHC_2H_4HC = CHMe$	9.274	13.80	13.23	13.4
3. $n-C_7H_{15}OH$	9.316	13.86	14.32	14.33	58. $H_2C = CHn - C_5H_{11}$	8.910		13.45	
4. <i>n</i> -C ₈ H ₁₇ OH	10.564	15.70	16.17	16.11	$59. H_2C = C(Me)n-Bu$	8.998	13.40	13.45	
5. n-C ₉ H ₁₉ OH	11.812	17.54	18.01	17.97	60. $[H_2C = C(Me)CH_2-]_2$	10.424	15.49	15.07	15
6. <i>n</i> -C ₁₀ H ₂₁ OH	13.060	19.37	19.86	19.82	61. $H_2C = CHn - C_6H_{13}$	10.158	15.10	15.30	15.
7. $n-C_{11}H_{23}OH$	14.308	21.21	21.70	21.66	62. E-n-PrHCCHn-Pr	10.432	15.51	15.30	15.4
8. C ₁₃ H ₂₇ CH(OH)CH ₃	19.279	28.54	29.09	29.01	63. $H_2C = C(Me)n - C_5H_{11}$	10.246	15.23	15.49	15.
9. n-C ₂₀ H ₄₁ OH	25.540	37.73	38.32	38.20	64. $H_2C = C(Me)n - C_6H_{13}$	11.494	17.07	16.05	17.
10. HOC ₅ H ₁₀ OH	7.316	10.92	11.33	11.15	65. $E-n-PrHC = CHn-Bu$	11.680	17.34	17.14	17.
11. HOC ₆ H ₁₂ OH	8.564	12.76	13.17	13.04	$66. Z-cyclo-(C_3H_6HC=CH)$	6.604	9.87	9.01	8.
12. HOC ₇ H ₁₄ OH	9.812	14.59	15.01	14.77	67. Z -cyclo-($C_4H_{10}HC = CH$)	7.852	11.71	10.60	11.
13. HOCH ₂ CH(OH)CH ₂ OH	5.295	7.94	8.43	8.14	68. Z -cyclo-($C_5H_{10}HC = CH)$	9.100	13.55	12.70	12.
14. HOCH ₂ CH(OH)C ₂ H ₄ OH	6.543	9.78	10.24	11.50	69. Z -cyclo-($C_6H_{12}HC = CH$)	10.348	15.38	14.55	14.
15. HOC ₂ H ₄ CH(OH)C ₂ H ₄ OH	7.791	11.62	12.06	11.95	70. Z -cyclo-($C_7H_{14}HC = CH$)	11.596	17.22	16.39	16.
16. HOCH ₂ CH(OH)CH(OH)C ₃ H ₂	9.018	13.42	13.89	13.67	71. $H_2C = C(Me)HC = CH_2$	6.592	9.85	9.54	10.
17. HOC ₃ H ₆ CH(OH)C ₃ H ₇ OH	10.287	15.29	15.72	15.32	72. $H_2C = CHHC = CHMe$	6.778	10.13	9.54	10.
18. n-PrOEt	7.081	10.57	10.63	10.69	73. $H_2C = CHHC = CHEt$	8.026	11.96	11.38	12.
19. n-PrOn-Pr	8.329	12.41	12.48	12.77	74. $MeHC = CHHC = CHMe$	8.300	12.37	12.16	12.
20. n-BuOi-Pr	9.472	14.09	14.32	14.28	75. $MeHC = CHHC = CHEt$	9.548	14.20	13.23	14.
21. n-BuOn-Bu	10.825	16.08	16.17	16.25	76. EtCHO	4.079	6.15	6.33	6.
22. nC ₂ H ₁₅ OEt	12.073	17.92	18.01	17.98	77. n-PrCHO	5.327	7.99	8.17	8.
23. n - $C_5H_{11}On$ - C_5H_{11}	13.321	19.76	19.86	19.93	78. MeCOn-Pr	6.518	9.74	10.01	9.
24. n-C ₆ H ₁₃ On-C ₆ H ₁₃	15.817	23.43	23.55	23.59	79. EtMeCHCHO	6.582	9.84	10.01	10.
25. n-C ₇ H ₁₅ On-C ₇ H ₁₅	18.313	27.11	27.24	27.27	80. n-BuCHO	6.575	9.83	10.01	10.
26. n-C ₈ H ₁₇ On-C ₈ H ₁₇	20.809	30.78	30.94	30.96	81. Me ₂ CHCH ₂ CHO	6.582	9.84	10.01	10.
27. $n-C_{10}H_{21}On-C_{10}H_{21}$	25.801	38.13	38.32	38.35	82. EtCOn-Pr	7.766	11.58	10.40	11.
28. MeOC ₂ H ₄ OEt	7.810	11.65	11.33	11.39	83. MeCOn-Bu	7.766	11.58	11.85	11.
29. n-PrOC ₂ H ₄ OH	7.557	11.27	11.33	11.30	84. n-C ₅ H ₁₁ CHO	7.823	11.67	11.85	11.
30. n-BuOC ₂ H ₄ OH	8.825	13.14	13.17	13.14	85. Et ₂ CHCHO	7.830	11.68	11.85	
31. HOC ₂ H ₄ OC ₂ H ₄ OC ₂ H ₄ OH	10.078	14.98	14.63	14.27	86. n-C ₆ H ₁₃ CHO	9.071	13.50	13.70	13.
32. MeOC ₂ H ₄ OC ₂ H ₄ OC ₂ H ₄ OMe	13.040	19.34	18.28	18.18	87. EtCOn-Bu	9.014		13.70	13.
33. <i>n</i> -BuOC ₂ H ₄ OC ₂ H ₄ OC ₂ H ₄ OH	15.331	22.72	21.94	21.93	88. n-PrCOn-Pr		13.42	13.70	13.
34. HOCH ₂ CH(OMe)CH ₂ OH	6.692	10.00	10.24	10.07	89. MeCOn-C ₅ H ₁₁		13.42		13.
35. HOCH ₂ CH(OH)CH ₂ OMe	6.776	10.12	10.24	10.00	90. EtCOn-C ₅ H ₁₁	10.262		15.54	15.
36. HOCH ₂ CH(OMe)CH ₂ OMe	8.173	12.18	12.06	11.93	91. MeCOn-C ₆ H ₁₃	10.262		15.54	15.
37. MeOCH ₂ CH(OMe)CH ₂ OMe		14.36	13.89	13.79	92. <i>n</i> -C ₇ H ₁₅ CHO	10.319	15.34	15.54	15.
38. HOC ₂ H ₄ CH(OMe)CH ₂ CH(OMe)Me		17.54	17.55	17.35	93. cyclo-(C ₃ H ₆ CO)	5.186	7.78	7.49	7.
39. cyclo-C ₆ H ₁₁ OH	7.963	11.87	11.74	11.38	94. <i>cyclo</i> -(C ₄ H ₈ CO)	6.434	9.62	9.28	9.
40. C ₄ H ₄ O ¹	5.749	8.61	8.06	7.20	95. cyclo-(C ₅ H ₁₀ CO)	7.682		11.12	11.
41. C ₄ H ₈ O ₂ ²	6.506	9.73	8.79	8.59	96. <i>cyclo</i> -(C ₆ H ₁₂ CO)	8.930	13.30	12.81	12.
42. H ₂ C(OMe) ₂	5.223	7.84	7.67	7.58	97. cyclo-(C ₇ H ₁₄ CO)	10.178	15.13	14.81	14.
43. H ₂ C(OEt) ₂	7.775	11.60	11.33	11.35	98. cyclo-(C ₈ H ₁₆ CO)	11.426	16.97	16.65	16.
44. H ₂ C(O- <i>n</i> -Pr) ₂	10.271	15.27	15.01	15.02	99. cyclo-(C ₉ H ₁₈ CO)	12.674	18.81	18.50	18.
45. $H_2C(O-n-Bu)_2$	12.767	18.94	18.69	18.76	100. $H_2C = CHCOMe$	5.360	8.04	7.93	7.
46. MeCH(OEt) ₂	8.918	13.28	15.01	15.12	101. $H_2C = C(Me)COMe$	6.696	10.01	9.77	9.
47. C ₄ H ₉ CH(OEt) ₂	12.662	18.79	18.69	18.69	102. H2C = CHCOEt	6.608	9.88	9.77	9
48. C ₁₅ H ₃₁ CH(OMe) ₂	23.838	35.24	35.29	34.91	102. $H_2C = CHCOLt$ 103. $E-n-PrHC = CHCOMe$	9.506		10.74	13
49. $H_2C = CHC_3H_7$	6.414	9.59	9.76	9.85	103. E-n-FIRC = CHCOME 104. EtCOOH	4.472	6.73	7.07	6.
49. H2C = CHC3H7 $50. Z-MeHC = CHEt$	6.688	10.00	9.76	9.89		5.727	8.58	8.89	8
					105. Me ₂ CHCOOH	5.720	8.57	8.89	8
51. E-MeHC = CHEt	6.688	10.00	9.76	9.92	106. n-PrCOOH				
$52. H_2C = CHn-Bu$	7.662	11.43	11.60	11.58	107. EtCH(Me)COOH	6.975	10.42	10.72	10
53. $(H_2C = CHCH_2 -)_2$	7.752	11.56	11.38	11.58	108. n-BuCOOH	6.968	10.41	10.72	10.
54. H2C = C(Me)n-Pr	7.750	11.56	11.60	11.69	109. n-C ₅ H ₁₁ COOH	8.216		12.55	12.
55. Z -MeHC = CHn -Pr	7.936	11.83	11.60	11.71	110. <i>n</i> -C ₆ H ₁₃ COOH	9.464	14.09	14.39	14.

¹ Furan, ² 1,4-Dioxane

2.4.2.2. Aldehydes, Ketones, and Carboxylic Acids

For the atom-in-molecule polarizability of the carbonyl carbon atom in aldehydes we obtained an average value (39–47, 90) of 0.980 Å³ and the same value calculated for the carbonyl C atom in carboxylic acids. A somewhat higher value of 1.062 Å³ was obtained for ketones (48–55).

Table 4. Molecular masses (M_r) , pycnometric densities (ϱ) and refractive indices (n) used to calculate the experimental polarizabilities in Table 3 with the equation of *Lorenz* and *Lorentz*. If not mentioned otherwise d is d_4^{20} in g/ml, n is n_d^{20} and M_r in g/mol.

Molecule	М,	Q	n	Molecule	M_{r}	Q	n
1. n-C ₅ H ₁₁ OH	88.15	0.8144	1.4101	56. E -MeHC = CHn -Pr	84.16	0.6784	1.3935
2. n-C ₆ H ₁₃ OH	102.18	0.8136	1.4178	57. $H_2C = CHC_2H_4HC = CHMe$	96.17	0.7186	1.4200
3. n-C ₇ H ₁₅ OH	116.21	0.8219	1.4249	58. $H_2C = CHn - C_5H_{11}$	98.19	0.6970	1.3998
4. n-C ₈ H ₁₇ OH	130.23	0.8270	1.4295	$59. H_2C = C(Me)n-Bu$	98.19	0.7000	1.4040
5. n-C ₉ H ₁₉ OH	144.26	0.8273	1.4333	60. $(H_2C = C(Me)CH_2-)_2$	110.20	0.7512	1.43995 ²
6. $n-C_{10}H_{21}OH$	158.29	0.8297	1.43719	61. $H_2C = CHC_6H_{13}$	112.22	0.7149	1.4087
7. $n-C_{11}H_{23}OH$	172.31	0.8298	1.43918	62. $E-n-PrHC = CHn-Pr$	112.22	0.7141	1.4114
8. $C_{13}H_{27}CH(OH)CH_3$	228.42	0.8328	1.4463	63. $H_2C = C(Me)n - C_5H_{11}$	112.21		1.4123^{22}
9. n-C ₂₀ H ₄₁ OH	298.56	0.8405	1.4550	64. $H_2C = C(Me)n - C_6H_{13}$	126.24	0.7343	1.4184
10. HOC ₅ H ₁₀ OH	104.15	0.9939	1.4494 1	65. $E-n-PrHC = CHn-Bu$	126.24	0.7318	1.4205
11. Me(HO)C ₄ H ₆ (OH)Me	118.18	0.9610	1.4475	66. Z -cyclo-($C_3H_6HC = CH$)	68.13	0.7720	1.4225
12. HOC ₇ H ₁₄ OH	132.21	0.9569	1.4520 ²	67. Z -cyclo- $(n$ - $C_4H_{10}HC = CH)$	82.15	0.8102	1.4465
13. HOCH ₂ CH(OH)CH ₂ OH	92.11	1.2613	1.4746	68. Z -cyclo- $(n$ - $C_5H_{10}HC = CH)$	96.17	0.8228	1.4552
14. HOCH ₂ CH(OH)C ₂ H ₄ OH	106.12	1.018	1.4688^{3}	69. Z -cyclo- $(n$ - $C_6H_{12}HC = CH)$	110.20	0.8472	1.4698
15. HOC ₂ H ₄ CH(OH)C ₂ H ₄ OH	120.15	1.1291	1.4785	70. Z -cyclo- $(n$ - $C_7H_{14}HC = CH)$	124.23	0.8671	1.4805
16. HOCH ₂ CH(OH)CH(OH)C ₃ H ₇	134.18	1.089	1.4724	71. $H_2C = C(Me)HC = CH_2$	68.13	0.6810	1.4219
17. HOC ₃ H ₆ CH(OH)C ₃ H ₇ OH	148.20	1.075	1.4725	72. $H_2C = CHHC = CHMe$	68.13	0.6760	1.4301
18. n-PrOEt	88.15	0.7386	1.3695	73. $H_2C = CHHC = CHEt$	82.15	0.7050	1.4380
19. n-PrOn-Pr	102.18	0.7360	1.3809	74. $MeHC = CHHC = CHMe$	82.15	0.7196	1.4500
20. n-BuOi-Pr	116.21	0.7594	1.3870 5	75. $MeHC = CHHC = CHEt$	96.17	0.7384	1.4578
21. n-BuOn-Bu	130.23	0.7689	1.3992	76. EtCHO	58.08	0.8058	1.3636
22. nC ₇ H ₁₅ OEt	144.26	0.790	1.41116	77. n-PrCHO	72.12	0.8170	1.3843
23. <i>n</i> -C ₅ H ₁₁ O <i>n</i> -C ₅ H ₁₁	158.29	0.7833	1.4119	78. MeCOn-Pr	86.14	0.8089	1.3895
24. <i>n</i> -C ₆ H ₁₃ On-C ₆ H ₁₃	186.34	0.7936	1.4204	79. Et(Me)CHCHO	86.14	0.8029	1.3869 23
25. $n-C_7H_{15}On-C_7H_{15}$	214.40	0.8008	1.4275	80. n-BuCHO	86.14	0.8095	1.3944
26. n-C ₈ H ₁₇ On-C ₈ H ₁₇	242.45	0.8063	1.4327	81. Me ₂ CHCH ₂ CHO	86.14	0.7977	1.3902
27. $n-C_{10}H_{21}On-C_{10}H_{21}$	298.56	0.8150	1.44107	82. EtCOn-Pr	100.16	0.8118	1.4004
28. MeOC ₂ H ₄ OEt	104.15	0.8529	1.3868	83. MeCOn-Bu	100.16	0.81127	
29. <i>n</i> -PrOC ₂ H ₄ OH	104.15	0.8329	1.4133	84. n-C ₅ H ₁₁ CHO	100.16	0.81392	
30. <i>n</i> -BuOC ₂ H ₄ OH	118.18	0.9015	1.4198	85. Et ₂ CHCHO	100.16	0.8110	1.4025
31. HOC ₂ H ₄ OC ₂ H ₄ OC ₂ H ₄ OH	150.18	1.1274	1.45318	86. n-C ₆ H ₁₃ CHO	114.19	0.8495	1.4113
32. MeOC ₂ H ₄ OC ₂ H ₄ OC ₂ H ₄ OMe	178.23	0.990	1.42339	87. EtCOn-Bu	114.19	0.8183	1.4057
	206.29	0.9890	1.4233	88. n-PrCOn-Pr	114.19	0.8174	1.4069
33. n-BuOC ₂ H ₄ OC ₂ H ₄ OC ₄ H ₄ OH		1.124	1.4505 10	89. MeCOn-C ₅ H ₁₁	114.19	0.8111	1.4088
34. HOCH ₂ CH(OMe)CH ₂ OH	106.12		1.4445 11	90. EtCOn-C ₅ H ₁₁	128.22	0.8221	1.4153
35. HOCH ₂ CH(OH)CH ₂ OMe	106.12	1.1189		91. MeCOn-C ₆ H ₁₃	128.22	0.8221	1.4151
36. MeOCH ₂ CH(OH)CH ₂ OMe	120.15	1.0085	1.4192 1.4055 ⁵	92. n-C ₇ H ₁₅ CHO	128.22	0.8202	1.4217
37. MeOCH ₂ CH(OMe)CH ₂ OMe	134.18	0.946		93. <i>cyclo</i> -(C ₃ H ₆ CO)	70.09	0.9548	1.4217
38. HOC ₂ H ₄ CH(OMe)CH ₂ CH(OMe)Me		0.9631	1.4329 12	94. <i>cyclo</i> -(C ₄ H ₈ CO)	84.13	0.94869	
39. cyclo-C ₆ H ₁₁ OH	100.16	0.9624	1.4641	95. <i>cyclo</i> -(C ₅ H ₁₀ CO)	98.15	0.94809	1.4507
40. C ₄ H ₄ O	68.08	0.9514	1.4214 13		112.17	0.9478	1.46.08
41. C ₄ H ₈ O ₂	88.12	1.0337	1.4224 14	96. cyclo-(C ₆ H ₁₂ CO)	126.20	0.9581	
42. H ₂ C(OMe) ₂	76.11	0.8593	1.3513	97. cyclo-(C ₇ H ₁₄ CO)		0.9560	1.4694
43. $H_2C(OEt)_2$	104.15	0.8319	1.3748 15	98. cyclo-(C ₈ H ₁₆ CO)	140.23		1.4729
44. H2C(On-Pr)2	132.21	0.8345	1.3939 16	99. cyclo-(C ₉ H ₁₀ CO)	154.26	0.9654	1.4806
45. $H_2C(On-Bu)_2$	160.26	0.834	1.4072 17	$100. \text{ H}_2\text{C} = \text{CHCOMe}$	70.09	0.8636	1.4081
46. $Me_2CH(OEt)_2$	132.21	0.8200	1.3891 18	101. $H_2C = C(Me)COMe$	84.13	0.8527	1.4220
47. n-C ₄ H ₉ CH(OEt) ₂	160.26	0.829	1.4029 19	$102. \text{ H}_2\text{C} = \text{CHCOEt}$	84.12	0.8468	1.4192
48. $n-C_{15}H_{31}CH(OMe)_2$	286.50	0.8542	1.4382 20	103. E-n-PrHC = CHCOMe	112.17	0.8496	1.4436
49. $H_2C = CHC_3H_7$	70.14	0.6405	1.3715	104. EtCOOH	74.08	0.9930	1.3809
50. Z -MeHC = CHEt	70.14	0.6556	1.3830	105. Me ₂ CHCOOH	88.11	0.96815	
51. E-MeHC=CHEt	70.14	0.6482	1.3793	106. n-PrCOOH	88.12	0.9577	1.3980
$52. H_2C = CHn-Bu$	84.16	0.6731	1.3837	107. EtCH(Me)COOH	102.13	0.9410	1.4051 25
53. $(H_2C = CHCH_2 -)_2$	82.15	0.6880	1.4042	108. n-BuCOOH	102.13	0.9391	1.4085
54. H2C = C(Me)n-Pr	84.16	0.6799	1.3920	109. n-C ₅ H ₁₁ COOH	116.16	0.9274	1.4163
55. Z -MeHC = CH n -Pr	84.16	0.6869	1.3977	110. n-C ₆ H ₁₃ COOH	130.19	0.9200	1.4170

2.4.2.3. Amides

Only formamides and acetamides were considered, and the common average value (calculated from 56–62) for the carbonyl C atom is 1.140 Å³.

2.5. Test of the Derived Increments

While the numerical values of the polarizability increments are of importance for actual calculations, a general scheme might be of interest for qualitative considerations. Thus the conclusions drawn from our computational results are summarized in Scheme 1.

Oxygen

 α_0 (alcohol) $\approx \alpha_0$ (aldehyde) $\approx \alpha_0$ (ketone) $\approx \alpha_0$ (carboxylic acid) $\approx \alpha_0$ (amide) $< \alpha_0$ (ethers) α_0 (= C - C = O, trans) > α_0 (= C - C = O, cis)

Nitrogen

 $\alpha_N(\text{amine}, p) < \alpha_N(\text{amine}, s) < \alpha_N(\text{amine}, t)$ α_N (amide, p) $< \alpha_N$ (amide, s) $< \alpha_N$ (amide, t)

Carbon

 $\alpha_{\rm C}$ (methyl) $< \alpha_{\rm C}$ (methylene) $< \alpha_{\rm C}$ (methine) $\alpha_C(R^1HC^* = C^*H_2) < \alpha_C(R^1R^2C^* = C^*H_2) < \alpha_C(R^1HC^* = C^*HR^2)$ $\alpha_{\rm C}(R^1HC = CHR^2, Z) < \alpha_{\rm C}(R^1HC = CHR^2, E)$ $\alpha_C(C^* = C^* - C = O, trans) > \alpha_C(C^* = C^* - C = O, cis)$ $\alpha_{C}(R^{1}HC = CH - CH = C, Z) < \alpha_{C}(R^{1}HC = CH - CH = C, E)$ $\alpha_C(C = O, aldehyde) \approx \alpha_C(C = O, acide)$ $<\alpha_C(C=O, ketone)<\alpha_C(C=O, amide)$

Scheme 1.

- [1] a) H. Niephaus, G. Raabe and J. Fleischhauer, Z. Naturforsch. 41a, 671 (1986). b) H. Niephaus, Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen 1986.
- R. M. Metzger, J. Chem. Phys. 74, 3444 (1981).
- [3] K. J. Miller and J. A. Savchik, J. Amer. Chem. Soc. 101, 7206 (1979).
- [4] G. Raabe, H. Niephaus and J. Fleischhauer, Z. Naturforsch. 41 a, 796 (1986).
- [5] G. Raabe and J. Fleischhauer, Z. Naturforsch. 42a, 153 (1987).
- [6] E. Heyne, H. Niephaus, G. Raabe and W. Schleker, Z. Naturforsch. 40a, 1143 (1985).
- [7] G. Raabe and J. Fleischhauer, Z. Naturforsch. 39a, 486 (1984).
- [8] E. Heyne, G. Raabe and J. Fleischhauer, Z. Naturforsch. 39a, 593 (1984).
- [9] R. M. Metzger, Topics in Current Physics 26, 80 (1981).
- [10] W. A. Sokalski and H. Chojnacki, Int. J. Quantum Chem. 23, 679 (1978).
- [11] W. A. Lathan, G. R. Pack and K. Morokuma, J. Amer. Chem. Soc. 97, 6624 (1975).
- [12] W. Kołos, Theoret. Chim. Acta. 51, 219 (1979).
- [13] R. C. Bingham, M. J. S. Dewar and D. H. Lo, J. Amer. Chem. Soc. 97, 1285 (1975).

110 arbitrarily chosen molecules were now used to test the derived increments. The molecular weights, densities and refraction indices used to calculate the corresponding experimental values are listed in Table 4. There is no overlap between this group and the set used to calculate the increments. Table 3 contains the molecular polarizabilities (α'_{MW}) calculated directly from the increments in Table 2. At a correlation coefficient of |r| = 0.997 they correlate nicely with the corresponding experimental values. The correlation equation was then employed to calculate the polarizabilities denoted as α_{MW} (cf. Table 3). The average difference between α_{MW} and the experimental data is 0.34 Å³, corresponding to a mean deviation of 2.7%. α_{MW} and α_{ex} of the 110 compounds are compared in Figure 2.

Acknowledgement

We thank Prof. Dr. Jörg Fleischhauer for his interest in and support of our work.

- [14] M. J. S. Dewar, H. Metiu, P. J. Student, A. Brown, R. C. Bingham, D. H. Lo, C. A. Ramsden, H. Kollmar, P. Weiner and P. K. Bischof, OCPE 11, 279 (1975).
- [15] CRC Handbook of Chemistry and Physics. (R. C. Weast, ed.) 56th ed. (1975), or a more recent edition of this reference book.
- [16] D'ans Lax Taschenbuch für Chemiker und Physiker. (E. Lax, C. Synowietz eds.) Bd. I, 3rd ed. Springer-Verlag, Berlin 1967, (a) p. 602, (b) p. 627.
- [17] D'ans Lax Taschenbuch für Chemiker und Physiker. (E. Lax, C. Synowietz eds.) Bd. II, 3rd ed. Springer-Verlag, Berlin 1964, (a) p. 537, (b) p. 745, (c) p. 471. [18] D. H. Aue, H. M. Webb and M. T. Bowers, J. Amer.
- Chem. Soc. 98, 318 (1976).
- [19] B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, Vogel's Textbook of Practical Organic Chemistry. 5th ed. (1989) p. 1327. Longman: Burnt Mill, Har-
- [20] Beilsteins Handbuch der Organischen Chemie. Band 1, viertes Ergänzungswerk (1973) p. 881; drittes Ergänzungswerk (1958) p. 842. Springer-Verlag: Berlin.
- [21] Beilsteins Handbuch der Organischen Chemie. Band 1, drittes Ergänzungswerk (1958) p. 2105. Springer-Verlag: Berlin.